
MC8051 IP Core

Synthesizeable VHDL Microcontroller IP-Core

User Guide

Web: https://www.oreganosystems.at/products/ip-cores/8051-ip-core

Contact: contact@oreganosystems.at

Version 1.4

March 2019

https://www.oreganosystems.at/products/ip-cores/8051-ip-core
mailto:contact@oreganosystems.at

page 2 of 11

8051 IP Core - Overview

Key Features

- Fully synchronous design

- Instruction set compatible to the industry standard 8051 microcontroller

- Optimized architecture enables fast one to four clocks per OP code

- Up to 10 times faster due to completely new architecture

- User selectable number of timers/counters as well as serial interface units

- Active timer/counter and serial interface units selectable via additional special

function register

- Optional implementation of the multiply command (MUL) using a parallel

multiplier unit

- Optional implementation of the divide command (DIV) using a parallel divider unit

- Optional implementation of the decimal adjustment command (DA)

- No multiplexed I/O ports

- 256 bytes internal RAM

- Up to 64 Kbytes ROM and up to 64 Kbytes RAM

- Source code available free of charge under the GNU LGPL license

- Technology independent, clear structured, well commented VHDL source code

- Easily expandable by adapting/changing VHDL source code

- Parameterizeable via VHDL constants

page 3 of 11

8051 IP Core – Block Diagram
The starting from the top level module and its submodules are depicted in figure 1. The

toplevel signal names are shown as well as the three memory blocks used in the

design. The user selectable number of serial interfaces and timer/counter units is

indicated by the dotted line between the modules mc8051_siu and mc8051_tmrctr.

clk

reset

int0_i

int1_i

p0_i

p1_i

p2_i

p3_i

p0_o

p1_o

p2_o

p3_o

all_rxd_o

all_txd_o

all_rxdwr_o

N

N

N

N

N

mc8051_top

mc8051_core

mc8051_ram

(128x8 bit)

mc8051_rom

(up to 64kx8 bit)

mc8051_ramx

(up to 64kx8 bit)

8

8

8

8

8

8

8

8mc8051_control

all_t0_i

all_t1_i

all_rxd_i

N

N

N

mc8051_alu

mc8051_siu mc8051_siu

N

N

mc8051_tmrctr mc8051_tmrctr

figure 1: Block diagram of the 8051 microcontroller IP-core.

page 4 of 11

Signal Name Description

clk System clock. Only rising edge used.

reset Asynchronous reset of all flip-flops.

all_t0_i Timer/counter 0 inputs.

all_t1_i Timer/counter 1 inputs.

all_rxd_i Receive data input for serial interface units.

int0_i Interrupt 0 inputs.

int1_i Interrupt 1 inputs.

p0_i Parallel port 0 input.

p1_i Parallel port 1 input.

p2_i Parallel port 2 input.

p3_i Parallel port 3 input.

all_rxdwr_o Data direction signal for bidirectional rxd input/output (high = output)

data.

all_txd_o Transmit data output for serial interface unit.

all_rxd_o Data output for mode 0 operation of serial interface unit.

p0_o Parallel port 0 output.

p1_o Parallel port 1 output.

p2_o Parallel port 2 output.

p3_o Parallel port 3 output.

table 1: Top level signal name.

page 5 of 11

Design Hierarchy
The design hierarchy and the corresponding VHDL files are depicted in figure 2.

testbench

tb_mc8051_top_

tb_mc8051_top_sim

external RAM

model

mc8051_ramx_

mc8051_ramx_rtl

ROM model

mc8051_rom_

mc8051_rom_rtl

microcontroller

core

mc8051_core_

mc8051_core_struc

internal RAM

model

mc8051_ram_

mc8051_ram_rtl

timer/counter

mc8051_tmrctr_

mc8051_tmrctr_rtl

control unit

mc8051_control_

mc8051_control_struc

ALU

mc8051_alu_

mc8051_alu_struc

serial interface

mc8051_siu_

mc8051_siu_rtl

memory unit

control_mem_

control_mem_rtl

FSM

control_fsm_

control_fsm_rtl

alumux_

alumux_rtl

alucore_

alucore_rtl

addsub_core_

addsub_core_

struc

comb_mltplr_

comb_mltplr_rtl

comb_divider_

comb_divider_rtl

dcml_adjust_

dcml_adjust_rtl

addsub_cy_

addsub_cy_rtl

addsub_ovcy_

addsub_ovcy_rtl

figure 2: Design hierarchy of the 8051 microcontroller IP-core.

The VHDL source files have been consistently named throughout the whole design:

• VHDL entities entity-name_.vhd

• VHDL architectures entity-name_rtl.vhd for modules containing logic

• entity-name_struc.vhd for modules just connecting

submodules

• VHDL configurations entity-name_rtl_cfg.vhd

 entity-name_struc_cfg.vhd

The core itself is made up of the submodules timer/counter, ALU, serial interface, and

control unit. RAM or ROM blocks are most often generated corresponding to the

selected target technology and are therefore instantiated in the highest design

hierarchy. Generated RAM blocks and BIST structures - for ASIC production test

integration - can be easily added at this level of the design.

page 6 of 11

Clock Domains

The 8051 IP core is a fully synchronous design. There is a single clock signal that

controls the clock input of every storage element. Clock gating is not used. The clock

signal is not fed into any combinatorial element. The interrupt input lines are

synchronized to the global clock signal using a standard two-level synchronization stage

because they may be driven by external circuitry that operates with another clock. The

parallel port input signals are not synchronized that way. If the user decides that there is

also the need for synchronizing these signals it may be added easily.

Memory Interfaces

Due to the optimized architecture the signals coming from and going to the memory

blocks have not been registered. So during synthesis input and output timing

constraints should be placed on the corresponding ports and synchronous memory

blocks should be used for the mc8051 IP-core.

Configuring the 8051 IP Core
In the following the parameterizability of the 8051 microcontroller IP-core design will be

discussed and information for embedding the IP-core in larger designs will be given.

Timer/Counter, Serial Interface, and Interrupts

The original microcontroller design offered only 2 timer/counter units, one serial

interface, and two external interrupt sources. 8051 derivates later offered more of these

resources on chip. Since this is sometimes a limiting factor we decided to implement

some sort of parameterization in the 8051 IP core. This 8051 microcontroller IP-core

offers the capability to generate up to 256 of these units by simply changing a VHDL

constant’s value.

In the VHDL source file mc8051_p.vhd the constant C_IMPL_N_TMR can take values

from 1 to 256 to control this feature. Values out of this interval result in a non functioning

configuration of the core. Figure 3 shows the corresponding lines of VHDL code.

page 7 of 11

 -- Select how many timer/counter units should be implemented

 -- Default: 1

 constant C_IMPL_N_TMR : integer := 1;

 -- Select how many serial interface units should be implemented

 -- Default: C_IMPL_N_TMR ---(DO NOT CHANGE!)---

 constant C_IMPL_N_SIU : integer := C_IMPL_N_TMR;

 -- Select how many external interrupt-inputs should be implemented

 -- Default: C_IMPL_N_TMR ---(DO NOT CHANGE!)---

 constant C_IMPL_N_EXT : integer := C_IMPL_N_TMR;

figure 3: VHDL source code for configuring the number of timer/counter units, serial interfaces,

and external interrupts.

At the moment the three constants C_IMPL_N_TMR, C_IMPL_N_SIU,

C_IMPL_N_EXT cannot be changed independently. Incrementing constant

C_IMPL_N_TMR by one means to generate two additional timer/counter units, one

additional serial interface, and two additional external interrupt sources.

To be able to reach all registers of the generated units without changing the address

space of the microcontroller only two 8bit registers are inferred as additional special

function registers. These are TSEL (address 0x8Eh for timer/counter units) and SSEL

(address 0x9Ah for serial interface units). If these registers point to a not existent device

number, the default unit number 1 is selected. The circuit is depicted in figure 4.

page 8 of 11

CLK

EN

1D

CLK

EN

1D

CLK

EN

1D

MUX

DECODER

8 to 256

CLK

EN

1D

TSEL

TCON
256

TCON
2

TCON
1

selection of the

Nth unit through

additional

special function

register TSEL

TCON data

input

TCON
N
 data

output

256x8 bit to

1x8 bit

figure 4: Selection of a TCON register using additional TSEL register.

If an interrupt occurred during this very device was not selected by e.g. TSEL, the

corresponding interrupt flag stays set until the matching interrupt service routine is

executed. Subsequent interrupts during the time the device has not been selected thou

result in only one single call to the interrupt service routine.

page 9 of 11

Optional Instructions

In some cases, it makes sense to not implement instructions which are not needed and

consume furthermore much chip area. Such instructions are 8bit multiplication, 8bit

division, and 8bit decimal correction. Therefore, the MUL instruction for 8bit

multiplication can be skipped when the VHDL constant C_IMPL_MUL in the

mc8051_p.vhd source file is set to 0. Equally the 8bit division DIV can be skipped

through setting the VHDL constant C_IMPL_DIV to 0 and the decimal correction

instruction can be skipped by setting the constant C_IMPL_DA to 0. The corresponding

lines of VHDL source code can be seen in figure 5.

 -- Select whether to implement (1) or skip (0) the multiplier

 -- Default: 1

 constant C_IMPL_MUL : integer := 1;

 -- Select whether to implement (1) or skip (0) the divider

 -- Default: 1

 constant C_IMPL_DIV : integer := 1;

 -- Select whether to implement (1) or skip (0) the decimal adjustment command

 -- Default: 1

 constant C_IMPL_DA : integer := 1;

figure 5: Code fragment showing how instructions can be skipped.

The gain in terms of chip area when not implementing all three optional instructions is

approximately 10 %.

Parallel I/O Ports

The mc8051 IP-core offers just as the original 8051 microcontroller 4 bidirectional 8bit

I/O ports to conveniently exchange data with the microcontroller’s environment. To

ease integration of our core for IC design the original’s multi-function ports have not

been rebuilt and all signals (e.g. serial interface, interrupts, counter inputs, and interface

to external memory) have been fed separately out of the core (see figure 1). The basic

structure of the parallel I/O ports is shown in figure 6.

page 10 of 11

Pad

DQDQ

from port p
x
_o<7:0> of

mc8051_core, where it

comes directly form a

register.

to mc8051_core input port

p
x
_i<7:0>, where it is

directly fed into a register

input (dashed registers mark

synchronisation registers if

data is not in sync with the

system clock)

internal (e.g. some

FPGAs) or external

pull up resistor

figure 6: Basic structure of the parallel I/O ports.

Verification
Verification of the core was accomplished by simulating the VHDL code and comparing

the results of the executed program (i.e. ROM contents) with the results produced by an

industry standard 8051 simulator (http://www.keil.com/demo/evaldl.asp?p=C51).

After simulation the contents of a certain memory area is written to a file both for the

standard 8051 simulator (using the command save keil.hex 0x00,0xFF) and the

VHDL code simulation (e.g. using the script write2file.do, producing the file

regs.log in the simulation directory). The resulting text files have to be identical.

To be able to feed the compiled assembler file from the Keil development software to

the VHDL code simulation a short C program is provided in the latest distribution of the

IP core. It converts the Intel hex format file into a text file containing binary 8 bit data,

suited for being read by the VHDL simulator (file mc8051_rom.dua in the simulation

directory).

Deliverables
Extract the mc8051.zip file as is using the directory tree we recommend. There are

already scripts for synthesis using Synopsys’s DesignCompiler for ASIC design and

Synplicity’s Synplify for FPGA design. Additionally there are scripts for RTL simulation

using Mentor’s Modelsim. See figure 7 for an overview of the mc8051 directory tree.

http://www.keil.com/demo/evaldl.asp?p=C51

page 11 of 11

mc8051 dc

doc

msim

synpl

tb

vhdl

figure 7: Directory tree in which the mc8051 IP-core is distributed.

Directory Contents

dc DC synthesis script files

doc Documentation

msim Modelsim simulation directory

synpl Synthesis with Synplicity’s Synplify

tb Testbench and memory models

vhdl Synthesizeable, well commented VHDL source code

table 2: Directory tree: Brief description.

Document Revisions
- Version 1.0, January 2002: Initial version of the mc8051 IP Core User Guide.

- Version 1.1, June 2002: Added document history and added some details to the

verification paragraph. Removed scr directory from project tree.

- Version 1.2, June 2013: Changed mail address, Web link and project tree

- Version 1.4, March 2019: New logos

